Misc \begin{align} &e^{x} - 5 + e^{-x} = 0 &e^{x} - 5 + \frac{1}{e^{x}}=0 &e^{x} (e^{x} - 5 + \frac{1}{e^{x}}) = e^{x} (0) &e^{2x} - 5e^{x} + 1 = 0 &u^{2} - 5u + 1 = 0 \qquad [u = e^{x}] &D = (-5)^{2} - 4(1)(1) &D = 25 - 4 = 21 &u = \frac{-(-5) \pm \sqrt{21}}{2(1)} = \frac{5 \pm \sqrt{21}}{2} &e^{x} = \frac{5 \pm \sqrt{21}}{2} &ln(e^{x}) = ln(\frac{5 \pm \sqrt{21}}{2}) &x = \pm 1.5668 {{Check mark}}