Name: _____ Date: _____

CHE-112 - CHAPTER 13 - PRACTICE QUESTIONS

- 1. Express the rate of the following reaction equation in terms of the rate of concentration change of NO₂Cl:
 - $2 \text{ NO}_2(g) + \text{Cl}_2(g) \longrightarrow 2 \text{ NO}_2\text{Cl}(g)$
 - A) rate of reaction = $\Delta [Cl_2]/\Delta t$
 - B) rate of reaction = $-\frac{1}{2} (\Delta [NO_2Cl]/\Delta t)$
 - C) rate of reaction = $\frac{1}{2} (\Delta [NO_2Cl]/\Delta t)$
 - D) rate of reaction = $-\frac{1}{2} \left(\Delta [NO_2] / \Delta t \right)$
- 2. Express the rate of the following reaction equation in terms of the rate of concentration change of CHCl₃:

$$CHCl_3(g) + Cl_2(g) \longrightarrow CCl_4(g) + HCl$$

- A) rate of reaction = $\Delta [CCl_4]/\Delta t$
- B) rate of reaction = $2(\Delta[CHCl_3]/\Delta t)$
- C) rate of reaction = $\Delta [CHCl_3]/\Delta t$
- D) rate of reaction = $-\Delta [CHCl_3]/\Delta t$
- 3. Let the rate of the reaction described by the equation

$$H_2(g) + Br_2(g) \longrightarrow 2 HBr(g)$$

be expressed as $-\Delta[Br_2]/\Delta t$. Express the rate of reaction in terms of the rate of concentration change of HBr.

- A) rate of reaction = $-\frac{1}{2} \Delta [HBr]/\Delta t$
- B) rate of reaction = $-\Delta[H_2]/\Delta t$
- C) rate of reaction = $\frac{1}{2} \Delta [HBr]/\Delta t$
- D) rate of reaction = $2\Delta[HBr]/\Delta t$

4. Let the rate of the reaction described by the equation

$$H_2(g) + 2 ICl(g) \longrightarrow 2 HCl(g) + I_2(g)$$

be expressed as $\Delta[I_2]/\Delta t$. Express the rate of reaction in terms of the rate of concentration change of ICl.

- A) rate of reaction = $\Delta [IC1]/\Delta t$
- B) rate of reaction = $-\frac{1}{2} \Delta [IC1]/\Delta t$
- C) rate of reaction = $-\Delta[ICl]/\Delta t$
- D) rate of reaction = $-2\Delta[IC1]/\Delta t$
- 5. The rate law for the reaction described by the equation

$$N_2O_5(g) \longrightarrow 2 NO_2(g) + \frac{1}{2} O_2(g)$$

at 343 K is first order in $[N_2O_5]$ with a rate constant $k = 1.80 \text{ h}^{-1}$. Given that $[N_2O_5]_0 = 0.112 \text{ M}$, calculate the rate of the reaction at t = 0.

- A) 0.112 M.h⁻¹
- B) 0.202 M.h^{-1}
- C) 1.80 M.h⁻¹
- D) 69.1 M.h⁻¹
- 6. The rate law for the reaction described by the equation

$$NO_2(g) \longrightarrow NO(g) + \frac{1}{2}O_2(g)$$

at 598 K is:

rate of reaction =
$$(0.54 \text{ M}^{-1}.\text{s}^{-1})[\text{NO}_2]^2$$

Given that $[NO_2]_0 = 8.33 \cdot 10^{-2}$ M, calculate the rate of the reaction at t = 0 s.

- A) $3.7 \cdot 10^{-2} \text{ M.s}^{-1}$
- B) $8.3 \cdot 10^{-2} \text{ M.s}^{-1}$
- C) $3.7 \cdot 10^{-3} \text{ M.s}^{-1}$
- D) $6.9 \cdot 10^{-3} \text{ M.s}^{-1}$

7. The rate law for the reaction described by the equation

$$CHCl_3(g) + Cl_2(g) \longrightarrow CCl_4(g) + HCl(g)$$

is:

rate of reaction =
$$k[CHCl_3][Cl_2]^{1/2}$$

What is the overall order of this reaction?

- A) 1
- B) 2
- C) 3/2
- D) 5/2

8. Nitrogen monoxide and oxygen react according to the reaction equation

$$2 \text{ NO } (g) + O_2 (g) \longrightarrow 2 \text{ NO}_2 (g)$$

Using the following initial rate data, determine the rate constant for the reaction.

Run	[NO] ₀ /M	[O ₂]/M	Initial rate of formation of NO ₂ (g)/MDs ⁻¹
1	0.0228	0.0105	$1.35 \cdot 10^{-5}$
2	0.0456	0.0105	$5.40 \cdot 10^{-5}$
3	0.0228	0.0210	$2.70 \cdot 10^{-5}$

- A) $2.47 \text{ M}^{-2}.\text{s}^{-1}$
- B) $0.0564 \text{ M}^{-2}.\text{s}^{-1}$
- C) $1.35 \cdot 10^{-3} \text{ M}^{-2}.\text{s}^{-1}$
- D) $1.23 \text{ M}^{-2}.\text{s}^{-1}$

9. Hydrogen peroxide decomposes according to the reaction equation

$$2 \text{ H}_2\text{O}_2 (aq) \longrightarrow 2 \text{ H}_2\text{O} (l) + \text{O}_2 (g)$$

This reaction is first order in $[H_2O_2]$ at 70°C with a rate constant of $k = 0.0444 \text{ min}^{-1}$. If the initial concentration is $[H_2O_2]_0 = 0.25 \text{ M}$, then what is the value of $[H_2O_2]$ 45.0 minutes after the solution is prepared?

- A) 0.0043 M
- B) 0.035 M
- C) 0.055 M
- D) 0.15 M
- 10. Argon-41 is a γ -emitter with a half-life of 109.2 minutes. What fraction of a sample of Ar-41 remains after 37.5 hours?
 - A) $6.29 \cdot 10^{-7}$
 - B) $7.70 \cdot 10^{-7}$
 - C) $4.09 \cdot 10^{-6}$
 - D) $6.92 \cdot 10^{-6}$
- 11. If a sample of sodium-24 chloride contains 0.075 mg of sodium-24, how much sodium-24 remains after 9.63 hours? The half-life of sodium-24 is 14.96 hours.
 - A) 0.027 mg
 - B) 0.048 mg
 - C) 0.072 mg
 - D) 0.084 mg
- 12. You order a sample of Na₃PO₄ containing the radioisotope phosphorus-32 ($t_{1/2} = 14.28$ days) on Monday. You don't get to it until Thursday, 3.0 days after it was prepared and shipped. How much of the activity remains in your sample?
 - A) 15%
 - B) 32%
 - C) 69%
 - D) 87%

13. The gas-phase decomposition of CH₃CHO (g) occurs according to the equation

$$CH_3CHO(g) \longrightarrow CH_4(g) + CO(g)$$

The reaction is second order with $k = 0.105 \text{ M}^{-1}.\text{s}^{-1}$ at 490°C. If the concentration of CH₃CHO (g) is 0.022 M initially, what will its concentration be 4.3 minutes later?

- A) 0.0013 M
- B) 0.0089 M
- C) 0.014 M
- D) 0.020 M
- 14. The rate law for the reaction described by the equation

$$2 \text{ N}_2 \text{O}(g) \longrightarrow 2 \text{ N}_2(g) + \text{O}_2(g)$$

is second order in N_2O (g). The reaction was carried out at 900 K with an initial concentration of N_2O (g) of 3.5 · 10^{-2} M. If it took 91.3 minutes for [N_2O] to fall to half it original value, what is the value of the rate constant for this reaction?

- A) $3.5 \cdot 10^{-3} \text{ M}^{-1}.\text{s}^{-1}$
- B) $4.8 \cdot 10^{-3} \text{ M}^{-1}.\text{s}^{-1}$
- C) $5.2 \cdot 10^{-3} \text{ M}^{-1}.\text{s}^{-1}$
- D) $8.4 \cdot 10^{-3} \text{ M}^{-1}.\text{s}^{-1}$
- 15. The rate law for the reaction described by the equation

$$A(g) \longrightarrow B(g) + C(g)$$

is second order in A (g) with an rate constant $k = 1.13 \cdot 10^{-2} \text{ M}^{-1}.\text{s}^{-1}$ at 550 K. If the reaction is carried out at 550 K with an initial concentration of A (g) of 5.84 \cdot 10⁻² M, how long will it take for [A] to fall to half it original value?

- A) 1450 seconds
- B) 1520 seconds
- C) 1600 seconds
- D) 1920 seconds

- 16. How does tripling the concentration of a reactant change the rate of a reaction that is second order in that reactant?
 - A) The rate increases by a factor of three: $(3)^1$.
 - B) The rate increases by a factor of six: (2)(3).
 - C) The rate increases by a factor of eight: $(2)^3$.
 - D) The rate increases by a factor of nine: $(3)^2$.
- 17. Cyclobutane, C₄H₈ (g), decomposes to ethylene, C₂H₄ (g), at 700 K:

$$C_4H_8(g) \longrightarrow 2C_2H_4(g)$$

The reaction is first order in $[C_4H_8]$ with k = 0.015 min⁻¹. If the initial concentration of C_4H_8 (g) is 1.33 M, what is its concentration after 5.5 minutes?

- A) 0.36 M
- B) 0.63 M
- C) 0.98 M
- D) 1.2 M
- 18. How long does it take for the concentration of a reactant to decrease by 25.6% of its initial value for a first-order reaction with $k = 1.35 \text{ min}^{-1}$?
 - A) 13.1 s
 - B) 0.200 min
 - C) 1.01 min
 - D) 21.9 s
- 19. If the half-life of uranium-238 is $4.47 \cdot 10^9$ years, then how long will it take for the amount of radioactivity in a sample to decrease to 0.050% of its original value?
 - A) 5.74 half-lives
 - B) 12.7 half-lives
 - C) $1.93 \cdot 10^{10}$ years
 - D) $4.90 \cdot 10^{10}$ years

20. Dinitrogen pentoxide decomposes according to the reaction equation

$$N_2O_5(g) \longrightarrow 2 NO_2(g) + \frac{1}{2}O_2(g)$$

If the initial concentration of N_2O_5 (g) is $[N_2O_5]_0 = 0.832$ M, and if $[N_2O_5] = 0.166$ M at t = 65.0 min, then what is $[NO_2]$ at t = 65.0 min?

- A) 0.525 M
- B) 0.666 M
- C) 1.05 M
- D) 1.33 M
- 21. Incomplete initial rate data are given below for the reaction described by

$$2 \text{ NO}_2(g) \longrightarrow 2 \text{ NO}(g) + O_2(g)$$

Run	$[NO_2]_0/M$	(rate of reaction) ₀ /MDs ⁻¹
1	1.10	0.65
2	1.60	1.38
3	2.25	x

What is the rate of reaction, x, for Run 3?

- A) 1.53 M.s^{-1}
- B) 2.22 M.s^{-1}
- C) 2.73 M.s^{-1}
- D) 2.89 M.s^{-1}
- 22. How does halving the concentration of a reactant change the rate of a reaction that is first order in that reactant?
 - A) The rate decreases by a factor of two: $(1/2)^1$.
 - B) The rate does not change: $(1)^{1/2}$.
 - C) The rate increases by a factor of 1.4: $(2)^{1/2}$.
 - D) The rate increases by a factor of two: $(2)^1$.

- 23. If plotting your rate data as ln[A] vs. *t* results in a straight line, then which of the following represents the slope (*m*) of that line?
 - A) -k
 - $\stackrel{\cdot}{B}$) $ln[A]_0$
 - C) 1/k
 - D) 1/[A]₀

Answer Key - Chapter 13 Practice Problems

- 1. C
- 2. D
- 3. C
- 4. B
- 5. B
- 6. C
- 7. C
- 8. A
- 9. B
- 10. A
- 11. B
- 12. D
- 13. C
- 14. C
- 15. B
- 16. D
- 17. D
- 18. A
- 19. D
- 20. D
- 21. C
- 22. A
- 23. A