Electromagnetic stress–energy tensor
In relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field.[1] The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions.
| Articles about |
| Electromagnetism |
|---|
![]() |
Definition
SI units
In free space and flat space–time, the electromagnetic stress–energy tensor in SI units is[2]
where is the electromagnetic tensor and where is the Minkowski metric tensor of metric signature (− + + +). When using the metric with signature (+ − − −), the expression on the right of the equation will have opposite sign.
Explicitly in matrix form:
where
is the Poynting vector,
is the Maxwell stress tensor, and c is the speed of light. Thus, is expressed and measured in SI pressure units (pascals).
CGS units
The permittivity of free space and permeability of free space in cgs-Gaussian units are
then:
and in explicit matrix form:
where Poynting vector becomes:
The stress–energy tensor for an electromagnetic field in a dielectric medium is less well understood and is the subject of the unresolved Abraham–Minkowski controversy.[3]
The element of the stress–energy tensor represents the flux of the μth-component of the four-momentum of the electromagnetic field, , going through a hyperplane ( is constant). It represents the contribution of electromagnetism to the source of the gravitational field (curvature of space–time) in general relativity.
Algebraic properties
The electromagnetic stress–energy tensor has several algebraic properties:
- It is a symmetric tensor:
- The tensor is traceless:
- .
Starting with
Using the explicit form of the tensor,
Lowering the indices and using the fact that
Then, using ,
Note that in the first term, μ and α and just dummy indices, so we relabel them as α and β respectively.
- The energy density is positive-definite:
The symmetry of the tensor is as for a general stress–energy tensor in general relativity. The trace of the energy–momentum tensor is a Lorentz scalar; the electromagnetic field (and in particular electromagnetic waves) has no Lorentz-invariant energy scale, so its energy–momentum tensor must have a vanishing trace. This tracelessness eventually relates to the masslessness of the photon.[4]
Conservation laws
The electromagnetic stress–energy tensor allows a compact way of writing the conservation laws of linear momentum and energy in electromagnetism. The divergence of the stress–energy tensor is:
where is the (4D) Lorentz force per unit volume on matter.
This equation is equivalent to the following 3D conservation laws
- (or equivalently with being the Lorentz force density),
respectively describing the flux of electromagnetic energy density
and electromagnetic momentum density
where J is the electric current density and ρ the electric charge density.
See also
References
- Gravitation, J.A. Wheeler, C. Misner, K.S. Thorne, W.H. Freeman & Co, 1973, ISBN 0-7167-0344-0
- Gravitation, J.A. Wheeler, C. Misner, K.S. Thorne, W.H. Freeman & Co, 1973, ISBN 0-7167-0344-0
- however see Pfeifer et al., Rev. Mod. Phys. 79, 1197 (2007)
- Garg, Anupam. Classical Electromagnetism in a Nutshell, p. 564 (Princeton University Press, 2012).
